PDPS-Bench TPCTC2024@VLDB

less than 1 minute read

Published:

โš ๏ธ ๐—ข๐—ป๐—ฒ ๐—ผ๐—ณ ๐˜๐—ต๐—ฒ ๐—ธ๐—ฒ๐˜† ๐—ฐ๐—ต๐—ฎ๐—น๐—น๐—ฒ๐—ป๐—ด๐—ฒ๐˜€ ๐—ถ๐—ป ๐—บ๐—ฎ๐—ฐ๐—ต๐—ถ๐—ป๐—ฒ ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—ฒ๐˜€๐—ฝ๐—ฒ๐—ฐ๐—ถ๐—ฎ๐—น๐—น๐˜† ๐—ณ๐—ผ๐—ฟ ๐—ผ๐—ฝ๐˜๐—ถ๐—บ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฝ๐—ฟ๐—ผ๐—ฏ๐—น๐—ฒ๐—บ๐˜€, ๐—ถ๐˜€ ๐—ด๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ป๐—ด ๐—ต๐—ถ๐—ด๐—ต-๐—พ๐˜‚๐—ฎ๐—น๐—ถ๐˜๐˜† ๐—ฑ๐—ฎ๐˜๐—ฎ. This data directly impacts the accuracy of models. In scenarios like parallel and distributed stream processing, the need for high-quality training and evaluation data becomes even more crucial.

TPCTC PDSP-Bench Presentation

๐Ÿ’ก To tackle this, we introduced ๐—ฃ๐——๐—ฆ๐—ฃ-๐—•๐—ฒ๐—ป๐—ฐ๐—ต, a performance benchmarking system designed to evaluate parallel and distributed stream processing (DSP) in heterogeneous environments. ๐—ฃ๐——๐—ฆ๐—ฃ-๐—•๐—ฒ๐—ป๐—ฐ๐—ต ๐—ฎ๐—ถ๐—บ๐˜€ ๐˜๐—ผ ๐—ฝ๐—ฟ๐—ผ๐˜ƒ๐—ถ๐—ฑ๐—ฒ ๐—ต๐—ถ๐—ด๐—ต-๐—พ๐˜‚๐—ฎ๐—น๐—ถ๐˜๐˜† ๐—ฝ๐—ฒ๐—ฟ๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐—ป๐—ฐ๐—ฒ ๐—ฏ๐—ฒ๐—ป๐—ฐ๐—ต๐—บ๐—ฎ๐—ฟ๐—ธ ๐—ฑ๐—ฎ๐˜๐—ฎ๐˜€๐—ฒ๐˜๐˜€ to ensure that DSP optimization mechanisms using machine learning can be effectively trained and fine-tuned in diverse and dynamic environments.

โญ I had the privilege of presenting our paper ๐—ฃ๐——๐—ฆ๐—ฃ-๐—•๐—ฒ๐—ป๐—ฐ๐—ต at ๐—ง๐—ฃ๐—–๐—ง๐—– ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฐ, held as part of the ๐—ฉ๐—Ÿ๐——๐—• ๐—–๐—ผ๐—ป๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ in China and sharing our work with the global data management community.

๐Ÿ‘‰ See the full update on LinkedIn

๐Ÿ‘‰ Our paper: