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ABSTRACT

This paper addresses the challenge of predicting the level of paral-
lelism in distributed stream processing (DSP) systems, which are
essential to deal with different high workload requirements of var-
ious industries such as e-commerce, online gaming, etc., where
nowadays DSP systems are extensively used. Existing DSP systems
rely on either manual tuning of parallelism degree or workload-
driven learned models for tuning parallelism, which is inefficient
and can lead to costly operator migrations and downtime when
workload drifts occur. Thus, we argue for a learned model that
can autonomously decide on the right parallelism degree while
generalizing across workloads and meeting the current demands
of DSP applications. We propose a novel approach that leverages
zero-shot cost models to predict parallelism degree while generaliz-
ing across unseen streaming workloads out-of-the-box. We propose
a rule-based strategy for the selection of parallelism degree and
meaningful transferable features related to query workload and
hardware that influence the parallelism decisions. We demonstrate
the effectiveness of our system by reducing the required training
dataset for parallelism prediction and achieving lower costs of par-
allel continuous query processing.

CCS CONCEPTS

« Computer systems organization — Real-time systems.

KEYWORDS

Distributed stream processing, Zero-shot cost models, Parallelism
prediction

ACM Reference Format:

Pratyush Agnihotri, Boris Koldehofe, Carsten Binnig, and Manisha Luthra.
2023. Zero-Shot Cost Models for Parallel Stream Processing. In Sixth Inter-
national Workshop on Exploiting Artificial Intelligence Techniques for Data
Management (aiDM ’23), June 18, 2023, Seattle, WA, USA. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3593078.3593934

1 INTRODUCTION

Why Parallel Stream Processing is Important? Distributed Stream
Processing (DSP) enables the processing of large volumes of data
in real-time while continuously delivering the result to the end-
user. Nowadays, various industries such as online gaming (King)
[2], e-commerce (Alibaba) [12], financial trading companies (In-
front) [7], and satellite domain (ASRC Federal) [21] rely on a Dis-
tributed Stream Processing (DSP) systems for their core operations
[6]. These industries need to continuously adapt the performance
of the DSP system to meet the demands of workloads that are ex-
tremely different and very high in scale. For instance, Alibaba has
to process more than 6 million transactions per second. Similarly,
other industries like King (30 billion events per day), and Infront (24
billion events per day) need to keep accelerating their performance
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with increasing workload and to meet the Quality of Service (QoS)
demands.

Another important challenge is that the query and data stream
workload that these DSP systems deal with are very different. For
instance, in Alibaba, customers’ purchase history to provide per-
sonalized recommendations is different for each customer and thus
would lead to different parallelism decisions of the recommendation
query for each customer. Typically, DSP systems offer parallel pro-
cessing by adding resources to process either a whole data stream
or splitting it into sub-parts. For instance, Alibaba uses Blink [12],
which adds resources to achieve parallelism with horizontal scaling.
Still, adding more resources is costly, both monetary and leads to
several operator migrations and downtime.

Research Question: This raises an important research question
that we address: how to predict additional resources for parallelism
that can generalize across workloads? Existing DSP systems like
Apache Flink [3] and Heron [14] integrate parallelism decisions,
commonly known as parallelism degree, as a manual knob to tune in
the streaming query. Instead, we argue for a learned model that au-
tonomously decides on the right parallelism degree with an ability
to generalize across workloads and meet current demands of DSP
applications. However, designing a DSP system for autonomous
parallelism decisions is non-trivial because it depends on several
dynamic and heterogeneous factors as follows: (1) Workload (data
stream and query) characteristics such as event rate and selectivity
of different kinds of operators and (2) Hardware characteristics of
the resource type where an operator is placed, such as the number
of cores. Thus, accurate modelling for parallel stream processing is
a key challenge for DSP applications where workload changes (e.g.,
peaks in the data stream) are very common [13].

Existing Solutions and Their Pitfalls. Several works aim at address-
ing autonomous decisions for parallel stream processing by machine
learning, e.g., using resource estimation [15, 18], parallelism [20],
or stream partitioning prediction [17, 23]. Another predominant
approach is by introducing elasticity, where resources are added
or removed to deal with higher workloads [4, 9]. While these ini-
tial works have shown considerable performance using machine
learning, they lack on either generalizing across workloads or are
very costly as they do not efficiently scale both horizontally and
vertically, leading to wasted resources or inferior performance [19].

An exciting direction that has shown promising initial results for
unseen workloads are zero-shot models for databases [10, 11, 16, 22]
and stream processing [8]. The main idea of zero-shot models is
to (once) train on various representative workloads with so-called
transferable features that enables the model to generalize. Further,
the shared graph representation with the encoded transferable fea-
tures allows training the zero-shot models for arbitrary queries.
However, they are currently limited to the task of cost estimation
for streaming queries, particularly latency and throughput predic-
tion [8]. Thus, it is unclear how these zero-shot cost models can
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Figure 1: Overview of parallelism prediction in our system leveraging zero-shot cost model. For training (left figure), the
zero-shot cost model is trained on the selected parallel query plans based on our rule-based strategy by executing and placing
them on heterogeneous hardware. It is trained on selected transferable features encoded in a graph representation that enables
the model to predict costs for unseen parallel streaming data configurations out-of-the-box. Thus, during inference (right
figure), the trained model can provide accurate cost estimation for unseen parallelism degrees and different configurations of
stream workloads and hardware without retraining or fine-tuning of the model. Finally, an optimizer is used to select a set of

parallelism degrees with minimum cost estimates.

solve other optimization tasks of DSP systems, like predicting the
parallelism degree of resources.

Parallelism Prediction by PANDA. In this short paper, we present
an overview of PANDA that fulfils the aforementioned research
gap by proposing a learned approach for parallelism prediction by
leveraging zero-shot cost models [1, 8] while generalizing across
unseen streaming workloads out-of-the-box. For this, we first need
a large set of representative training data that covers a wide range
of parallelism degrees for query plans on heterogeneous hardware.
To find this representative dataset, we propose a rule-based strategy
for parallelism degree selection that considers simple yet effective
rules like estimated selectivity and event rates of operators to tune
parallelism degrees during the training. This leads to a significant
reduction of the training dataset, half the training set is sufficient
using rule-based approach in contrast to random data collection for
training zero-shot models for the task of parallelism prediction.

Second, we selected meaningful transferable features related
to query workload and hardware that influences the parallelism
decisions, such as the number of cores of hardware, which has a
direct correlation to the parallelism degree that can be achieved
on a given resource. Third, we encoded hardware into the graph
representation that aids the model in joint parallelism and place-
ment decisions so that the zero-shot cost models can learn about
the parallelised performance on heterogeneous hardware. Finally,
we trained the zero-shot cost model with the additional transferable
features for parallelism decisions with two datasets collected using
random and our rule-based strategy. Using the cost estimates in
combination with an optimizer, we are able to find a set of paral-
lelism degrees that leads to lower (estimated) costs of continuous
query processing.

In the remaining sections, we first present an overview of our
approach to tackle these challenges in Section 2 and present pre-
liminary experiments in Section 3 and lastly conclude in Section 4.

2 SYSTEM OVERVIEW

In this section, we provide a high-level overview of PANDA system.
We first explain the training and inference phase of zero-shot cost
models for parallelism prediction and then explain the proposed
rule-based strategy used to collect training data for the parallelism

prediction task in Section 2.1 followed by an overview on the trans-
ferable feature and graph representation in Section 2.2.

Training phase. We leverage the zero-shot cost model proposed
for DSP system [8] and train it for our task of parallelism prediction
in a supervised way. For training, we propose a rule-based strategy
where we deduce parallelism degrees based on intuitive rules such
as setting a higher parallelism degree for higher event rates, as
those lead to a reduced processing rate of the resources and hence
they can benefit from higher parallelism. The specific rules devised
to collect the training data are detailed in the section below (cf.
Section 2.1) . Still, we collect a broad spectrum of queries with
different parallelism degrees selected based on our devised rules
and their respective costs (we consider the end-to-end latency of a
query plan).

In this work, we restrict to data-parallelism! that means multiple
instances of the same operator processes parts of datastream in
a parallel way [18]. Additionally, we train the queries with differ-
ent partitioning schemes depending on standard streaming opera-
tors such as hashing, rebalance and forward. Here, (1) the forward
scheme simply forwards the datastream to the downstream op-
erator when both upstream and downstream operators have an
equal parallelism degree, (2) Rebalance distributes the tuples of the
datastream in a round-robin fashion to the downstream operator
instances, and (3) Hashing distributes the tuples based on a hash key
when the parallelism degree of the downstream operator is greater
than that of the upstream operator. Thus the model learns from a
variety of distribution schemes of the tuples from the datastream
for different parallelism degrees selected based on the rules. While
this would seem like a huge effort, this is a one-time training where
we limit it by systematic rules for collecting data for the parallelism
prediction task. In contrast to workload-driven approaches [20]
where a separate model needs to be trained with newly collected
data this is way less — (only with 2500 queries the model performs
very accurately, see Section 3).

For training data collection, the operators are deployed on hetero-
geneous resources using a fairness policy and parallelism degrees

! Another type is task-parallelism where different operators can be parallelised in
sequence or in a pipeline fashion, but this is out of scope for this work.
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are collected with their corresponding costs (latency and through-
put). Finally, the model is trained with a set of transferable features
(cf. Table 1) encoded in a graph representation that signifies the
streaming directed acyclic graph (DAG) with a mapping to hard-
ware nodes. This transferable feature and graph representation
together enables the zero-shot cost models to generalize across
streaming workloads, hardware and parallelism degrees.

Inference and optimizer. The trained zero-shot cost model is used
to derive costs for an unseen parallel query plan on a new hard-
ware platform for a different parallelism degree out-of-the-box. A
key enabler is the transferable feature and graph representation,
where transferable means a feature that is independent of a specific
streaming workload (data stream and query), e.g., tuple width of
the data stream that can be specified independent of the underlying
workload. An example of a non-transferable feature is a specific
tuple attribute of a data stream such as “temperature values” that
cannot be generalized across different streaming workloads. Fur-
thermore, the ability to specify common query plans using the
graph representation and the message passing across the graph
and hardware nodes (multi-layer perceptrons (MLPs)) provides a
means to transfer to unknown query plans. The cost prediction
from the final layer of MLPs is used by the optimizer to select a set
of parallelism degrees that leads to minimum costs (latency).

In the following, we detail on the rule-based strategy followed
by the transferable feature and graph representation.

2.1 Rule-based Enumeration Strategy

Naively generating training data with different sets of parallelism
degrees would result only for a single query type, millions of com-
binations, such that the model only sees different parallel query
plans of a single query type. For instance, a parallel query plan with
9 operators (w) that can be deployed on a single node with 8 cores
(ncore) would lead to around 134 million parallel query plan combi-
nations (|n%,,..|) to be enumerated (yet we do not deploy them on a
cluster with 8 cores of node each). One way of enumeration that has
previously shown promising results for cost estimates in zero-shot
is a random enumeration [8]. However, the random selection of
parallel query plans would result in noisy plans, e.g., randomly se-
lecting higher parallelism degrees for downstream operators is less
meaningful (except for joins), as we show later in the evaluation.
Therefore, we use predefined rules to systematically select and
enumerate the parallelism degree (p) in a parallel streaming query
plan based on the parameters that can be directly influenced by
the parallelism ability of the hardware and thereby affect the per-
formance. To be precise, we use estimated selectivity (sel), incom-
ing (ein) and outgoing (eyy:) event rates of each operator in the
dataflow graph to set the parallelism degrees. With these predeter-
mined rules, we set meaningful parallelism degrees and enumerate
parallel query plans that span a good range of resource utilization
on a cluster of nodes so that the model learns meaningful costs.
To better balance the trade-off between exploration and exploita-
tion in the training data, we include estimated values of the above
parameters, e.g., selectivity, such that the model also learns about
“bad” parallel query plans (when the estimations are off).
Example: Assume we have two operators, upstream (w;) (pre-
decessor) and downstream (w;) (successor in dataflow graph). To
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Node Category | Feature Description
hardware CPU cores Number of processing cores
hardware Node identifier Unique identifier of every instance
Physical [ hardware Total memory Available memory of the node
hardware Network speed Network Iink speed between nodes
hardware CPU frequency CPU frequency on this instance
operator Operator type Type of operator
operator Parallelism degree Parallel instances of the operator
¢ Partitionine strat Strategy for data distribution
Operator artitioning strategy (forward, rebalance, hashing)
Logical operator Grouping identifier Operators grouped together by DSP
operator Tuple width in Incoming tuple width
operator Tuple width out Outgoing tuple width
operator Selectivity Ratio of output and input tuples
operator Input event rate Incoming events on this instance
operator Output event rate Outgoing events on this instance

Table 1: Selected transferable features for parallel query
plans and hardware nodes for the parallelism prediction
problem using zero-shot cost models.

decide the parallelism degree of the downstream operator such as
wj € {0s, W, cog}, the selectivity and output rate of the upstream
operator w; is computed. For instance, when a downstream operator
is a window-aggregate w; followed by an upstream filter operator
we, then a higher parallelism degree of w; does not make sense
because it is followed by a filter operator that typically has a low se-
lectivity. Therefore, we decrease the parallelism degree assignment
of the window-aggregate wy operator by a factor depending on the
selectivity of the upstream filter operator. To account for filter op-
erators with high selectivity, the factor correspondingly leads to an
increase in parallelism degree so the rules include those scenarios.
Later, sel (ws) is used to estimate outgoing event rate (eyy;) for
the next downstream operator (wj) in the parallel query plan and
therefore set parallelism degrees of the next operators, respectively.
By doing this selective assignment of parallelism degrees, we make
the model aware of the different costs of parallel query plans by
running only a few queries (as this is a very time-consuming pro-
cess). Our hypothesis is that this rule-based strategy will enable
the zero-shot cost model to predict costs for parallel query plans
with a small number of training queries.

2.2 Transferable Representation

There are three main ideas we extend the transferable representa-
tion of zero-shot cost models [8] for the task of parallelism predic-
tion. (1) We include parallelism-specific (static) hardware features
such as number of cores, total memory available, processing speed,
etc. A selected list of transferable features for parallel query plans
can be seen in Table 1. This is because the hardware properties
related to the CPU directly correlate with the parallelisation capa-
bilities of the node, this information is encoded as a transferable
feature of a physical node. With this additional information, the
model learns about the hardware capabilities of the node with
higher parallelism degrees in relation to the runtime costs. (2) To
encode parallelism degrees of an operator we consider two options
(i) to have it as a transferable feature or (ii) to have a separate
graph node for each new parallel operator instance of the parallel
query plan. We select option (i) due to its simplicity and limited
unique features of parallel graph nodes of an operator instance.
We observe that for each new graph node of an operator instance,
the transferable features that the model learns about the node are
almost the same (if not entirely), which leads to duplicate nodes in
the graph with redundant information, not to mention the added
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Figure 2: Trained queries required to achieve efficiency on the zero-shot model for different enumeration strategies

complexity of the model (with parallel nodes and edges). (3) We rep-
resent the hardware nodes separately in the graph representation
with the mapping of the operators that denotes their deployment
on the given hardware nodes. The physical graph deployment of
the parallel query plans influences the overall cost that is observed,
which is the reason this mapping needs to be learned by the model.

3 INITIAL EVALUATION

In this section, we show the efficacy of our rule-based strategy of
training data collection and the zero-shot cost estimates for parallel
query plans of DSP system. Before that, we explain our experiment
setup and training data generation.

Experiment Setup and Metrics. We use a research testbed called
CloudLab [5] to set up our Apache Flink cluster on varying hard-
ware configurations with homogeneous and heterogeneous worker
nodes as presented in Table 2 for data collection, training and infer-
ence. We used Apache Flink to deploy and manage the Kubernetes
cluster for task placement using fairness policy and job distribution.
We report Q-error metric q(c, ¢’) that is defined as max(c%, %') with
q > 1, which measures the relative deviation of the true cost metric
value c (latency) and its prediction ¢’ [8].

RAM | Disk Intel CPU Speed
Clusters | Nodes | CPU (GB) (GB) Processor (Ghz)
m510 270 8 64 64 Xeon D1548 2
15620 48 16-20 128 100 Xeon E52667 2.2

Table 2: Combinations of hardware configuration used for
data generation, training and inference

Training Data Generation. We implemented our parallel query
plan generator on Apache Flink, a widely used DSP system. The
plan generator enumerates parallel query plans using the rule-based
strategy explained in Section 2.1 with different query characteristics
such as event rates, operator types, etc. We execute the enumerated
query plans on different cluster nodes shown in Table 2 with distinct
hardware properties, e.g., cores from 8 — 20, etc., with 8000 queries
each for the query structure with in total 24000 queries used for
train (80%), test (10%), and validation (10%) phases. This allows our
zero-shot cost model to learn from different deployments of parallel
query plans. In addition, we used different enumeration strategies
random and rule-based strategies to enumerate parallelism degrees
for comparison. In the following, we show how accurate are the
zero-shot cost estimates using the transferable features selected
for parallel query plans with random and rule-based strategies.
Next, we compare the two enumeration strategies against different
amounts of training queries.

Experiment 1: Accuracy of zero-shot cost estimates. In Table 3,
we present the efficacy of our zero-shot model for three query

Enumeration Query Latency
Strategy Structure | median | 95th

Linear 1.2302 2.8055
2-way-join 1.3270 3.5349

Random 3-way-join | 1.2630 27992
Overall 1.2788 3.0608
Linear 1.2171 2.4263

Rule-based Z-way-join | 13601 34281
3-way-join | 1.3580 33730
Overall 1.3042 3.2566

Table 3: Q-errors (median, and 95th) for unseen combinations
of parallelism degree and workload properties.

structures: linear query comprising a filter and window-aggregate,
2-way-join comprising a window-join, window-aggregate and a
filter, 3-way-join with 2 window-joins, window-aggregate and a
filter as well as accuracy of the overall model (all query structures).
Moreover, we compare the accuracy results for the two enumer-
ation strategies, random and rule-based. A key observation from
the results is that the cost estimates are very accurate for latency
and overall, the model is able to provide good estimates for parallel
query plans. The second observation is that the rule-based approach
provides slightly better results in comparison to random, however,
at this level the difference is not very prominent. To further inves-
tigate the effect, we provide results in the next experiment, where
we observe the performance of the two strategies as we increase
the number of trained queries.

Experiment 2: Efficiency of enumeration strategies with trained
queries. In Figure 2, we analyze the accuracy of the model with the
increasing amount of training queries to examine our hypothesis
from Section 2.1. We observe with median, 95¢th and 99th percentile
of g-errors for latency estimates that rule-based strategy converges
soon with less amount of queries (2500) to better accuracy in com-
parison to the random strategy that needs at least more than 5000
queries to achieve better accuracies. Thus, we see that our rule-
based strategy is able to show promising results even with less
training data, which is typically the case in zero-shot cases. In our
follow-up work, we want to investigate further the performance
of our rule-based strategy for zero-shot cases where the model has
not seen anything about the parallel query plan.

4 CONCLUSION

In this paper, we propose a zero-shot approach for parallelism
prediction of streaming queries that can provide accurate cost es-
timates of unseen parallel query plans and in turn select optimal
parallelism degrees. To train the zero-shot cost model, we propose
a rule-based strategy that systematically enumerates parallel query
plans. Moreover, we present novel transferable features that have
an influence on the performance of parallel query plans. Our results
show that the proposed zero-shot cost models lead to very accurate
cost estimates for parallel query plans and the proposed rule-based
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strategy is able to achieve very accurate results with a small amount
of training data (2500 queries), which is quite promising for zero-
shot data and tasks. In future, we want to further dive into these
aspects and analyse the performance of the proposed model on
more zero-shot data and tasks.
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