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Abstract. The paper introduces PDSP-BENCH, a novel benchmarking
system designed for a systematic understanding of performance of paral-
lel stream processing in a distributed environment. Such an understand-
ing is essential for determining how Stream Processing Systems (SPS) use
operator parallelism and the available resources to process massive work-
loads of modern applications. Existing benchmarking systems focus on
analyzing SPS using queries with sequential operator pipelines within a
homogeneous centralized environment. Quite differently, PDSP-BENCH
emphasizes the aspects of parallel stream processing in a distributed het-
erogeneous environment and simultaneously allows the integration of ma-
chine learning models for SPS workloads. In our results, we benchmark
a well-known SPS, Apache Flink, using parallel query structures derived
from real-world applications and synthetic queries to show the capa-
bilities of PDSP-BENCH towards parallel stream processing. Moreover,
we compare different learned cost models using generated SPS work-
loads on PDSP-BENCH by showcasing their evaluations on model and
training efficiency. We present key observations from our experiments us-
ing PDSP-BENCH that highlight interesting trends given different query
workloads, such as non-linearity and paradozical effects of parallelism on
the performance.

Keywords: Parallel and distributed stream processing - Benchmark

1 Introduction

Benchmarking parallel dataflows is important. Recent advancements in
Stream Processing (SP) have introduced a variety of systems, such as Apache
Flink and Storm for analyzing data streams in real-time. These systems are es-
sential for many applications that handle immense data volumes. For instance,
Netflix uses Flink to process over 1.3T'B of data in its daily tasks, necessitating
the use of many parallel operator instances to keep up with the high arrival rates
and processing of data tuples [7]. For this, SP systems offer a data flow abstrac-
tion to specify operator parallelism in the query and provide data partitioning
strategies to manage data stream partitions. While such parallel data flows have
become an intrinsic part of every SP system, there is, however, very limited
understanding of the performance of SPS under massively parallel dataflows.
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Table 1: Comparison of the existing benchmarking system for SP with PDSP-BENCH
emphasizing the research challenges. Our work can effectively benchmark both parallel
data flow graphs and heterogeneous hardware as well as can be used as a benchmarking
system for training ML models on SP workloads. Abbreviations used are S: Sequential
plans, P: Parallel plans, He: Heterogeneous hardware, Ho: Homogeneous hardware, D:
Distributed cluster, and C: Centralized or single machine.

Key challenges of existing work. Most of the existing benchmarking
systems for SP are tailored towards the understanding of sequential dataflows
[AT8I60I36]. Those benchmarking parallel dataflows [58I24IT3|65] are restricted
to a homogeneous environment for resource placement and offer limited capa-
bilities in terms of scaling workloads, e.g., event rate and query parameters
like window length. We believe a thorough analysis of parallel data flow graph
placement on heterogeneous resources will reveal interesting insights into the
behavior of distinct operators on various hardware resources and vice versa. An-
other unique aspect of our work is the ability to scale workload generation —
both data streams and queries — by offering a benchmarking platform, which
in fact can also be used for machine learning of SPS workloads, becoming in-
creasingly important nowadays [27J64]. In summary, we identify three primary
challenges for PDSP-BENCH by analyzing key existing benchmarking systems
for SP workloads presented in Table

C1: Lack of expressiveness. Most existing benchmarks [I8/4I60J3T] often
overlook the importance of benchmarking parallel dataflow applications, thus fo-
cusing only on sequential dataflows with a limited set of operators. For instance,
StreamBench [43] overlooks essential operators, such as window functions, cru-
cial for concurrent partitioning and efficient resource utilization.

C2: Shift to heterogeneity. The shift towards heterogeneous hardware
requirement for benchmarking requires complex resource management, i.e., the
underlying system must manage parallel resource mapping on varied hardware
architectures, network links, and storage. Although benchmarking systems ex-
ist that assess parallel dataflows, like DSPBench [13] and SPBench [24], the
benchmarks are restricted to homogeneous hardware reducing their relevance
as real-world workloads often require heterogeneous environments [65]. For in-
stance, Netflix runs on 1400+ nodes on 50+ distinct clusters with varied CPU
cores [7] to deal with their demands of massively parallel dataflow applications.
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C3: Integrating learned SPS models. Most importantly, the rapid ad-
vancement in SP mechanisms using machine learning (ML), necessitates a scal-
able and resource-friendly benchmarking system, ensuring its long-term rele-
vance and utility in assessing future SPS with learned components. Recently,
ML has been successfully applied for cost-based optimizations in SPS to sup-
port heterogeneous placements [27/26] and deciding parallelism strategies [642]
and showed promising performance. This increasing surge of development in
learned SPS models calls for a benchmarking platform that allows fair compari-
son between them by integrating the models and generating consistent training
data for them. However, existing work do not provide a means to integrate ML
models such that they can be compared in a “fair” way with consistent metrics
(cf. Table[1] Learned SPS models).

Our proposal: We propose PDSP—BENCHEL a novel benchmarking system
specifically designed to tackle the three primary challenges faced by existing
benchmarks: lack of expressiveness in benchmarking parallel dataflows, the ne-
cessity for heterogeneous hardware support, and the integration of learned SPS
models. Unlike existing benchmarks, PDSP-BENCH enables the creation and
evaluation of parallel query structures (PQP) across a diverse range of operators
and input data streams, which we divide into synthetic and real-world workloads,
thus offering an expressive and scalable solution. We also provide mechanisms
to configure and manage heterogeneous hardware resources, by integrating re-
sources from testbeds like CloudLab with different configurations, which are
essential for accurately reflecting real-world deployment scenarios. Furthermore,
PDSP-BENCH facilitates the integration of learned SPS models, allowing for
systematic training and evaluation of these models on diverse streaming work-
loads. This integration is increasingly important given the surge of use of ML
for optimizing SPS performance [2[2664]. The system’s ability to generate large
corpora of streaming datasets ensures that the ML models are trained on data
representative of actual streaming workloads. (cf. Section

The evaluation of PDSP-BENCH involves extensive experiments that high-
light its capabilities in benchmarking parallel stream processing. By using Apache
Flink as the System Under Test (SUT), the evaluation demonstrates the impact
of varying parallel query complexities, hardware configurations, and workload
parameters on system performance. The results show the importance of con-
sidering both parallelism and heterogeneity to achieve optimal performance in
real-time data processing applications. Moreover, we also integrate and train var-
ious learned cost models for streaming queries and showcase their performance
in terms of model and training efficiency. (cf. Section

2 PDSP-BENCH: System Overview
The main goal of PDSP-BENCH is to enable benchmarking of parallel and dis-
tributed stream processing (PDSP) systems considering heterogeneous environ-

ments for query deployment. As such, PDSP-BENCH aims to enable the creation
of large corpora of streaming datasets across three dimensions: query, data and

* Source code: https://github.com/pratyushagnihotri/PDSPBench
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Fig.1: PDSP-BENCH system overview
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resource diversity. Such large corpora of datasets can be used in training ML
models for learning optimizations of SPS such as cost of executing streaming
queries and their placement on heterogeneous hardware. We demonstrate this
by training and evaluating learned cost models using the dataset generated by
PDSP-BENCH.

While PDSP-BENCH supports both sequential and parallel query plans (PQPS
we mainly focus on PQP to show our novel contributions to tackle challenges.
PDSP-BENCH has three main components: (1) workload generator, (2) con-
troller and (3) web user interface (cf. Figure[[). System under Test (SUT) rep-
resents the underlying SPS like Apache Flink or Storm that are being evaluated
by PDSP-BENCH. We present an overview of our solution (S#) towards the
goal and show how we address the aforementioned challenges (C#) of existing
work using PDSP-BENCH components as follows.

C1: Lack of expressiveness. S1: To specify PQP with a wide range of
operators and input data streams, PDSP-BENCH provides a core component
known as workload generator as seen in Figure [} The task of this component
is to enumerate different factors of workload — both data and query — e.g., par-
allelism degrees to generate meaningful PQP to be executed on SUT, e.g., on
Flink, hence enabling query and data diversity. These inputs on the enumera-
tion can be given by the user via the web user interface that is managed by the
controller as discussed later, but can be also configured directly into PDSP-
BENCH. A key issue we solve thereby is to generate PQP that are both walid
and representative of current streaming applications. Thus PQP must represent
both standard streaming and user-defined operators that we selected from open-
source data stream processing datasets like DEBS Grand Challenges. We believe
a combination of synthetic and real-world workloads is necessary to be able to
properly assess SUT’s performance and generate datasets that are representative
for ML in streaming platforms. We discuss this component in Section

C2: Shift to heterogeneity. S2: We provide interfaces to the users to
configure hardware resources that are used in turn to execute the generated

® By PQP, we mean a given query structure with parallelism degrees that can generate
multiple queries of this type of structure, e.g., linear PQP will generate a plan with
parallel instances of filter operators with random filter literals.
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PQP workload created by the former component. The controller and web user
interface (WUI) components alleviate this complexity of configuring different
hardware and hence enabling resource diversity for query execution and their
deployment by automating it. We support the evaluation of heterogeneous CPU
architectures such as Intel, AMD but also distinct network, memory and storage
parameters by integrating CloudLab cluster, but other cloud providers can also
be integrated easily. Thus, the complex mechanism of creation of machines and
query deployment using hefty resource providers like Kubernetes and Yarn in
SUT is hidden using these components.

C3: Integrating learned SPS models. S3: The entire benchmarking sys-
tem design holistically guides the users to specify PQP and its properties as well
as their execution on different hardware resources that in turn can used to gen-
erate data to train and evaluate ML models. For instance, such PQP execution
data can be used as features together with the performance metrics as labels,
such as end-to-end latency, on a given SUT to train a cost model that predicts
those metrics. Moreover, controller component allows integration of different ML
models to support training on different sizes of SP workloads. To evaluate mod-
els, we report metrics such as accuracy (g-error) and training overhead (queries
and time) as well as investigate trade-offs between them.

As a solution, we present the PDSP-BENCH workflow that shows how to use
PDSP-BENCH (cf. Figure|l) to generate streaming workloads that can be used
to train ML models and in turn also be used to infer on a PQP from PDSP-
BENCH using the trained model. All the user inputs are collected using the WUI
that are forwarded to the controller to orchestrate the benchmarking process.
It allows users to select from existing applications in the suite (real-world or
synthetic), but also provides a means to create novel applications in the form
of PQP. Moreover, we provide other input parameters like parallelism enumera-
tion strategies, workload and execution parameters such as event rate and query
execution time (to limit the query as they are long-running) explained in the
next section. We also allow to store the generated workload in a database, e.g.,
MongoDB that can be used for training ML models. Thus, ML Manager in the
controller uses the “same” training data to train available ML models, e.g., a
cost model can be trained to predict the costs of a PQP. This integrated ap-
proach allows “fair” comparison between ML models using our reported metrics
such as training overhead. Thus, the reporting of benchmarks must also support
training- and inference-related metrics and not just performance metrics. Dur-
ing the execution of PQP on the selected SUT, the performance as well as the
training metrics can be visualized in real-time on WUL.

We will focus on the workload generator component that is core to the PDSP-
BENCH system in the following.

3 Workload Generator

An important research question we answer in this work is “how to systematically
generate workloads (data and query) for a comprehensive suite of dataflows to
benchmark parallel and distributed streaming capabilities of SUT”. The work-
load generator component plays a pivotal role in this question, as it generates
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data streams and parallel query plans (PQP) derived using an enumerator (Sec-
tion for our integrated synthetic and real-world applications aiding to bench-
mark any given SUT (Section While we generate workload by varying
parameters related to data, query and resources given in Table |3} e.g., event
rates of upto 4 million events per second and parallelism degrees upto 128, they
are in practice limited by the amount of resources which are available (e.g., the
CloudLab cluster nodes m510, c630 and ¢6525 25g). Thus the scale of work-
loads that PDSP-BENCH can be much higher given the availability of the high
amount of resources. In the following, we focus on how we diversify across these
parameters.

3.1 Workload Enumerator

This component enables data and query diversity by orchestrating the generation
and a variety of data streams and PQP as described in the following.

Data stream: For synthetic applications, a common strategy to generate
synthetic data is to randomly select from a given valid data range to avoid
exhaustive enumeration of the given parameters, which is extremely time con-
suming and practically impossible to do within a reasonable timeframe. In fact,
domain randomization is a common technique used for synthetic data generation
to train ML models like deep neural networks such that it learns from the fea-
tures of interest. The rationale behind this method is to have variability in the
data so significant that the models trained on this data could generalize to the
real-world data with no additional training [56]. Thus, to address this PDSP-
BENCH includes a method for generating synthetic data streams by randomly
varying over (1) tuple width (# data items in a single tuple of a data stream),
(2) its data types (the data type per data item), and (3) event rates (# event
tuples produced per time unit) crucial both for rigorously testing SUT’s capabil-
ities and collecting meaningful training data for ML models (cf. Table for data
ranges). While we generate data using the defined range, these values are highly
configurable in the PDSP-BENCH. To enable data streams from real-world ap-
plications, we use kafka as a data producer that is connected via PDSP-BENCH
to the SUT. We repeat the data stream read from the source to mimic infinite
data streams.

2-Way Join Ad-analytics
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Fig. 2: Example of PQP: synthetic 2-way join and real-world ad analytics application.

5 Selected data: https://github.com/pratyushagnihotri/pdsp-bench_experiment_
data
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Query: For synthetic query plans, we offer an extensive range of PQP from
an array of query structures, including simple linear queries with one filter to
complex configurations involving multi-way joins and multiple chained filters. To
give an example representation of such a 2-way join see Figure (left). Moreover,
we randomly enumerate over multiple parameters of these query structures such
as filter function (e.g., <, <), its data type (the filter value’s data type), window
type (e.g., sliding, tumbling), window policy (e.g., time, count), etc., to generate
queries that again can be used to evaluate a given SUT and is representative of
workloads required to train a ML model. While we generate these query param-
eters randomly, an important question arises how we balance query properties,
e.g., selectivity. For instance, random selection of filter literals may result that
data never passes the generated filter. To avoid this, we use selectivity estima-
tion methods [2] to estimate selectivity of given filter operator such that queries
with only valid literals are generated where sel,,_is not 0. For real-world queries,
we enable users to choose from the given range of applications available in our
benchmark suite but also use them as a basis PQP to generate more queries.
For instance, consider the ad analytics application in Figure [2| (right) where
the users can choose to generate more queries by adding more filter operators,
choosing a different window count for the join, etc. This way, we allow users to
execute given applications but also generate queries to evaluate SUT capabilities
for dynamics and uncertainty inherent to real-world applications. Moreover, this
flexibility allows to generation of representative PQP aligned to the real world
to train ML models. The full list of query applications is described in Table [2]
and explained in the next section. Other data ranges to configure query plans
available in PDSP-BENCH can be seen in Table 3l

Parallelism enumerator: While random enumeration is meaningful as it
represents real-world data ranges for the parameters discussed so far, e.g., tuple
widths for data stream and window length for operators, we note that random
enumeration of parallelism degrees for operators is not the same. The random
selection of parallelism degrees in PQP will result in very noisy queries or even in-
valid queries, e.g., selecting higher parallelism degrees for downstream operators
is less meaningful since there are anyways less tuples that have to be processed
as tuples move down in the data flow graph (e.g., after filter operator). Moreover,
random selection of parallelism degrees, e.g., w, = 1, wx = 10 in the 2-way join
example query in Figure[2|leads to a plan that is very bad in performance because
it first limits processing capabilities by selecting only one instance of filter and
hence there is limited use of 10 instances of join operators and highly wasteful of
resources. While such bad plans still might be interesting for benchmarking SUT
to cover corner cases, learning ML models with such bad plans is not meaningful
as they are not encountered in real-world. Thus, we employ different strategies
for parallelism degree enumeration in PDSP-BENCH that can be selected by the
user depending on the needs. For instance, we provide Rule-based strategy that
selects meaningful parallelism degrees for PQP derived based on literature [35]
but also random enumeration as defined below.

Random selects a parallelism degree randomly within the given range, usu-
ally upto maximum number of cores available on physical resources, introducing
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variability for comprehensive performance assessment of SUT. Rule-based goes
beyond randomness and selects parallelism based on workload characteristics and
physical resources. It considers factors such as event rates, operator selectivity,
and the number of cores, enabling a more targeted enumeration of parallelism
for upstream and downstream operators. This approach seeks to optimize per-
formance by aligning parallelism with the specific demands and capacities of the
system [35]. Exhaustive aims to test every unique combination of parallelism
degrees, ensuring that each combination is tested. MinAvgMax cycles through gen-
erating queries with minimum, average, and maximum numbers of parallelism
degrees, systematically exploring the effects of varying parallelism degrees on
system performance, from least to most intensive use of resources. Increasing
evaluates the impact of incremental change in parallelism, starting at the mini-
mum degree and increasing stepwise to the maximum for each operator up the
dataflow graph. Parameter-based is designed for rapid testing, as it configures
parallelism based on user input.

3.2 Applications

We include a selection of applications in the PDSP-BENCH benchmarking suite
by analyzing previous research works in databases [I8/4] and stream process-
ing [I3129/36l24]. The applications are chosen based on a set of criterion that
capture the diversity of streaming workloads, including data sources’ tuple width,
the data items’ type, as well as the different operators and their complexity, e.g.,
standard SPS and user-defined operators in data flow graphs. To thoroughly as-
sess PDSP in heterogeneous environments, we classified these applications into
real-world and synthetic categories. This approach ensures a detailed evaluation
of the SUT capabilities, with a special emphasis on its performance (latency
and throughput) but also readiness for future demands across various conditions
from typical to peak usage scenarios for ML integration.

The real-world applications reflect genuine data streams, such as social media
feeds, financial transactions and IoT sensor data, which are crucial for mimick-
ing actual system loads and behaviors for the benchmarking process as pre-
sented in Table [2| For instance, DEBS 2014 Smart Grid data [52] serves as a
real-world benchmark, reflecting energy usage patterns from smart plugs. On
the other hand, synthetic applications also represent real-world scenarios by in-
cluding standard SPS operators like filters, aggregates and joins, but the data
streams are generated artificially, allowing to stress test SUT under hypothetical
future scenarios with high data volumes. This dual approach ensures a balanced
assessment of SUT’s performance, scalability, and adaptability, preparing it for
current and future data processing challenges. We enlist all the (both synthetic
and real-world) applications included in PDSP-BENCH in Table [3} While we
provide the applications described above, PDSP-BENCH can be easily extended
by integrating new jobs from other benchmarks like YSB [I8] and Nexmark [57].

4 Evaluation

In this section, we present an extensive evaluation using PDSP-BENCH. Due
to many workloads both synthetic and real-world and varying parameters in
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Applications Area Description
Word Count (WC) [38] Text ] Processes a text stream, t.okemzes‘ senter}ces into words, and cout.)ts the
Processing occurrences of each word in real-time using a key-based aggregation.
X K Network Detects network anomalies in machine usage data streams using the
Machine Outlier (MO) B3] ;o ivorine BFPRT algorithm [63] to identify outliers based on statistical medians.

Processes vehicle-generated location data through four queries: toll

Linear Road (LR) [4] Traffic notification, accident notification, daily expenditure, and total travel
Management . P
time, to calculate charges or detect incidents.
Logs Web Processes HT' TP Web Server log data to extract insights using two queries:
Processing (LP) [54] Analytics (i) counts visits within specified intervals, and (ii) tallies status codes.
Goorle Cloud Clowa A TonT S G By e e O
Monitoring (GCM) [37] Infrastructure °, elther grouped by J category, wit s processe g

sliding windows and specific grouping operators.
Processes a stream of order events to emit high-priority orders, utilizing
TPC-H (TPCH) [10] E-commerce operators to structure, filter, and calculate the occurrence sums of order
priorities within specified time windows.
‘Analyzes stock quotes streams to identify bargains by calculating the
Finance price-to-volume ratio against a threshold using VWAP and Bargain
Indez Calculators, emitting qualifying quotes.
Determines the emotional tone of tweets by assessing sentiment using

Bargain
Index (BI) [6]

icnr‘:f;‘;f:‘“(SA) &0 IS\Ic;(éi:(l)rk TwitterAnalyzer and SentimentClassifier operators, which apply Basic
or LingPipe classifiers to score and label the tweets.

Smart Sensor Analyzes smart home energy usage through two queries that calculate

Grid (SG) [20] Network global and local average loads using sliding window.

Click Web Analy?es user interactions xlvith online content through two queries:

Analytics (CA) [43] Analytics grouping click events by Client ID for repeat and total visits per URL,
and identifying geographical origins using a Geo-IP database.

Spike Sensor Processes sensorkdala strleanlls from a production plant to detelcij sudden

. temperature spikes by calculating average temperatures over sliding

Detection (SD) [E3] Network windows, and identify spikes exceeding 3% of the average.

Tronding Social Processes stream of tweets using the TwitterParser and TopicBxtractor

Topics (T'T) [E3] Nt ke operators to identify trending topics on Twitter based on aggregated

S popular topics based on predefined thresholds.
Traffic Sensor Processes streaming vehicle data using TraFﬁclj]ventParser and
Monitoring (TM) [4T] Network RoadMatcher operators to match vehicle locations to road segments then

calculates average speed per segment using the AverageSpeedCalculator.
Processes real-time data on user engagement with digital ads by parsing

Ad Analytics (AD) [47] Advertising clicks and impressions, calculating their counts within time windows,

and computing the click-through rate (CTR) with a rolling CTR operator.
Assess standard streaming workloads by randomly generating diverse

data streams and query structures with increasing complexity. It supports
various data types and standard operators like filter, window aggregate,
window join, and groupby to evaluate streaming operators through
synthetic query structures, from simple linear to complex multi-join queries.

Standard DSP

Synthetic Queries Quorics

Table 2: Benchmarked parallel query structures based on synthetic and real-world
applications (based on [32I13129/2465].

)

PDSP-BENCH, we select interesting observations (O#) from our evaluation for
the following evaluation questions.

Exp. 1: Impact of PQP complexity on performance. How increas-
ing parallel query complexity such as number and type of operators as well as
parallelism degree can influence performance?

Exp. 2: Impact of heterogeneous hardware on performance. How
heterogeneous hardware can impact the execution of PQP?

Exp. 3: Integration of ML models in PDSP-BENCH.(1) How differ-
ent learned cost models perform on various PQP? (2) What is the influence of
parallelism enumeration strategies on training efficiency?

Environment Setup and Implementation. We use the Cloudlab research
testbed [22] to perform all our experiments as it provides the necessary dis-
tributed infrastructure (cf. Table [4]) for configuring and deploying an SUT clus-
ter, enabling us to benchmark using PDSP-BENCH. For this initial evalua-
tion, we select Apache Flink v1.16.1 as SUT, however this can be exchanged
by any SPS. In addition, PDSP-BENCH uses an Apache Kafka on a separate
machine from SUT to produce data at different event rates for the various appli-
cations. PQP from different query structures (= 30k PQPs) are executed three
times for 3 minutes each on clusters of 10 nodes (cf. Table [4)) and correspond-
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ing performance metrics are collected and stored locally as well as in MongoDB
database. Furthermore, the controller is implemented in Django and WUI is de-
veloped with Vue.js to take users’ input, such as cluster setup, SUT deployment
and PQP as described in Section

Metrics. For experiments 1 and 2, we focus on end-to-end latency, though
PDSP-BENCH can be used to measure other performance metrics depending
upon SUT benchmarking requirements. End-to-end latency represents the time
interval starting from the production of the first data tuple from the data source
until when the output of the query result is delivered to the data sink. It is the
sum of the processing latency of each operator (including window time) in the
processing pipeline, the network latency of data transmission from a data source
within operators to the data sink, and the input and output latency of reading
and writing data to and from external systems like IoT data sources. Given that
operators might be distributed across different locations based on the CloudLab
resources, network latency is a significant factor. [2/44] We report the mean of
three runs of measuring median latency (50th percentile).

In experiments 3 and 4, we report Q-error q(c, ¢’) which is a well-known
metric to measure the accuracy of ML models [39]. In the context of learned cost
models it gives relative deviation of the true cost ¢ (latency) with its prediction
¢’. In addition, we compare the proposed enumeration strategies to generate
parallelism degrees (cf. Section|3) in terms of accuracy with Q-error and training
time of the models using these strategies.

Diversity Parameters Parameter Data Range
Real-world query structures Refer Table [2|for full list

Linecar, 2-chained filter, 3-chained filter, 4-chained flter,

2-way join, 3-way join, 4-way join, 5-way join, 6-way join

Synthetic query structures

Parallelism T<X5<8, 8<5 <16, 16 <M < 32,
Query degree categories 32 < L < 64, 64 < XL < 128, 128 < XXL
: Window duration (ms) 50, 100, 150, 200, 250, 325, 750, 1k, 1.5k, 2k, 2.5k, 3k, 4k,
5k, 6k, 7k, 8k, 9k, 10k
Window length (tuples) 2oL lg‘o(l),?égg: 236,5255,2;1075 5100 o
STiding length (ratio) [0.3, 0.4, 0.5, 0.6, 0.7] x Window length
Window types and policy type: sliding and tumbling, policy: count and time-based
Window aggr. functions min, max, avg, mean, sum
Join and Alter data types String, integer, double
- - <, 2, F =< >,
Filter functions startsWith, endsWith, endsNotWith, startsNotWith
Tuple width and data type [1 - 15] x [str., doubles, int]
Data Event rate (events/sec) 10, 100, 1k, 5k, 10k, 50k, 100k, 200k, 500k, 1mn, 2mn, 4mn
Partitioning strategy Strategy for data distribution (forward, rebalance, hashing)
Resource Cluster type Homogeneous: mb10, Heterogencous: c6320, c6525_2bg
ML models Loarned cost models Linear regression (LR) [23], Multi-layer perceptron (MLP) [30],

Random forest (RF) [I6], Graph neural networks (GNN) [G212I26]

Table 3: PDSP-BENCH benchmark parameters for SUT (order by complexity).

Network

Cluster Type Clusters Node CPU RAM (GB) Disk (GB) Processor Speed (Ghz) Link Speed
Ho m510 10 8 64 256 Xeon D 2 10
He c6525_25g 10 16 128 480 AMD EPYC 2.2 Gbps
He c6320 10 28 256 1024 Haswell 2.0

Table 4: Cluster of resources utilized on CloudLab tested to perform benchmarking
to SUT. Here, “Ho” and “He” are homogeneous and heterogeneous

Evaluation Parameters. Table[3|outlines evaluation parameter range eval-
uated by PDSP-BENCH for data stream, PQP and resources (cf. Section [3.1)).
Table [ presents the used hardware configuration from CloudLab testbed. Al-
though we evaluate different event rates, we present results on the highest event
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Fig. 3: Impact of parallelism degree on PQP performance from synthetic (top) and
real-world applications (bottom). The analysis shows distinct performance behaviors,
highlighting the benefits of parallelism in improving end-to-end latency and the need
to consider query and operator characteristics in PDSP environments. Results indicate
a complex interplay between standard operations and UDOs, with paradozical effects
and non-linear performance trends related to parallelism degree. (Note: Bottom figure
omits XS and XL; their performance mirrors S and L)

rate of 4mn events/sec. unless otherwise specified as intuitively higher scale of
events will benefit from parallelism. Thus, we consider the occurence of a number
of events over a fixed interval of time, so data is modelled as poisson distributed
since many real-world applications, e.g., network traffic, sensor networks, etc.,
are poisson distributed. However, in PDSP-BENCH we can also model other
common data distributions such as zipf.

4.1 Exp. 1: Impact of PQP complexity

We benchmark Flink using two PQP categories: a) synthetic, primarily with
standard SPS operators (cf. Figure [3[ top) and b) real-world, combining stan-
dard SPS and user-defined operators (UDOs) (cf. Figure [3| bottom). We select
homogeneous resources of m510 cluster (with 10 nodes) to analyze only par-
allelism degree diversity. Here, the complexity of a PQP correlates both the
composition of various operators and the parallelism degree applied to execute
them. For instance, linear parallel query structure, with a single source, multiple
filters, and window aggregation without joins, has simpler data flow and lower
computational demands, leading to reduced end-to-end latency. However, the
presence of dual filters introduces computational requirements that can affect
latency based on the data volume and filter complexity. In contrast, multi-way
joins significantly increase complexity and computational overhead, necessitat-
ing effective parallel processing to manage latency implications. We present key
findings from this analysis.

O1- Increasing parallelism can speed-up multi-way join queries. We observe
an interesting trend in Figure 3| (top) when parallel query structures transitioned
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from linear query to more chained filters and joins. Initially, adding filters keeps
latency consistent across parallelism categories XS to XXL. However, introduc-
ing join operators leads to a tipping point where latency increases linearly due
to the complexity of coordinating joins across distributed datasets. At the same
time, the parallel instances help in handling workload and reducing latency with
increasing complexity. A similar trend is observed in real-world applications Fig-
ure (bottom). PQP with standard SP operators such as ¥C, LR show consistent
performance, while those with data-intensive UDOs such as S4, SG, $D show
significant performance improvement with increasing parallelism. This highlights
that parallelism benefits PQP with data-intensive operators more than those
with less data-intensive operators.

02- Increasing parallelism can speed-up queries, but not in all cases. While
increasing parallelism generally improves performance by distributing the work-
load, for some PQP, there is a paradoxical effect on end-to-end latency as PQP
complexity increases. Beyond a certain threshold of parallelism (32 < L < 64),
particularly with multiple joins, the overhead of managing parallel operations,
such as data shuffling and synchronization, outweighs the benefits, leading to
increased latency. This is similar to adding more lanes in city traffic, which can
cause congestion at merge points. Thus, performance improvements in multi-way
joins are small or negligible as parallelism increases from L to X L. In contrast,
PQP from real-world applications show performance benefits at extremely high
parallelism. For instance, 32 < L < 64 parallelism significantly improves latency
in SG and SD, while AD shows negligible performance gains even beyond 128,
reflecting the complexity of operators in the query.

03- Queries with UDOs shows unpredictable performance. We also investi-
gate the performance intricacies of standard SP operators compared to UDOs.Our
findings reveal distinct scalability and computational overhead that underline
the relationship between operator types and parallel processing efficiency. Stan-
dard SP operators exhibit predictable scalability due to their well-defined seman-
tics. For instance, a flatMap operation in a ¥C application scales almost linearly
with increased parallelism, requiring no complex state management. Conversely,
UDOs, which embed custom logic, show variable scalability due to state handling
and coordination needs. In the AD application, custom aggregation and joining
logic on a sliding window result in non-linear scaling, where increased parallelism
leads to higher overhead, sometimes degrading performance.

04- The non-linear effect of parallelism on latency: PDSP-BENCH provides
a critical insight into the relationship between parallelism degree of PQP and
performance is non-linear. As the parallelism of standard SP operators in a query
increases, the performance does not linearly increase as not necessarily each
PQP advantages from parallelism. This results from the previous observations
O1 - O3 because of different factors like complexity of operators and paradox of
parallelism. For instance, SA, SG, SD has high latency for parallelism categories
S and M which starts improving at level L, with significant improvements when
parallelism exceeds 128.
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Fig. 4: Impact of heterogeneous hardware on performance for PDSP, with varying
parallelism degree and resource processing capabilities on real-world (top) and syn-
thetic (bottom) applications. Evaluation shows that parallel processing benefits from
hardware diversity but requires understanding hardware characteristics and workload
distribution to optimize performance and avoid of pitfalls such as diversity dilemma.

4.2 Exp. 2: Impact of heterogeneous hardware on performance

Next, we evaluate the impact of homogeneous (m510) and heterogeneous hard-
ware (c6525_25g,c6320) clusters on performance for PDSP and executed PQP
across clusters of 10 nodes each. Figure[d] (top) represents the mean end-to-end
latency of PQP with parallelism degree category as per # cores on hardware of
each cluster to analyze the performance of real-world applications. For instance,
m510 cluster has hardware with 8 cores, so selected PQP with S parallelism
degree category. Similarly, PQP with parallelism degree categories M and L as
clusters c6525_25g and ¢6320 have hardwares with 16 and 28 cores, respectively.
Figure[d] (bottom) shows the mean end-to-end latency across different parallelism
categories of PQP for three types of clusters for synthetic applications.

05- Powerful heterogeneous environment does not necessarily accelerate queries.
By evaluating PDSP across diverse hardware configurations, we encounter the
diversity dilemma where the theoretical advantages of heterogeneous environ-
ments sometimes clash with practical performance outcomes in Figure EI (top).
We anticipate that the diversity in computational processing capabilities would
universally accelerate parallel processing and enhance performance. However,
we notice that while applications S4, C4, SD significantly benefited, showing
exponential decrease in latency. On the other hand, 4D struggles to improve
the performance in heterogeneous configuration due to the complexity of UDOs
coupled with the communication overhead across different instances. This find-
ing suggests that the theoretical benefits of hardware diversity require careful
orchestration for workload distribution and resource management strategies to
leverage heterogeneous environments effectively.
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06- Finding optimal parallelism for queries is non-trivial. We also evaluate
parallel processing capabilities of synthetic PQP on various hardware clusters as
shown in Figure [4| (bottom). We notice no consistent balancing point of paral-
lelism exists for all workloads. Until this point, increased parallelism might not
yield further benefits and could even hinder performance due to higher commu-
nication and synchronization overhead. Finding this point in a heterogeneous
environment might be even more challenging. In homogeneous clusters, latency
generally increases with parallelism from XS to X L, then decreases at X X L. A
similar trend is observed in heterogeneous clusters, with latency highest at M
and decreasing for L, X L, and X X L. This suggests heterogeneous clusters ben-
efit more from increased parallelism due to diverse computational capabilities.
Initial higher latency at M may result from workload distribution imbalance,
improving as parallelism grows and better utilizing diverse resources.

O7- Homogeneous or heterogeneous clusters: There is no clear choice for all
cases. PDSP-BENCH provides insight about notable performance enhancement
with increasing parallelism and diverse hardware configurations as presented in
Figure [4] (top). Specifically, PQP from real-world applications benefit signifi-
cantly from increasing parallelism and hardware processing capability, leading
to improved performance. Conversely, PQP from synthetic applications demon-
strate better performance on homogeneous clusters than heterogeneous ones,
due to the efficient handling of standard SP operators. Conversely, in hetero-
geneous clusters, despite high computational potential, challenges arise from
uneven workload distribution and increased communication overheads due to
varying speeds across different hardware units.

4.3 Exp. 3: Integration of ML models in PDSP-BENCH

(1) Performance of learned cost models. The ML Manager (cf. Section
of PDSP-BENCH offers benchmarking of performance of various ML models
tailored for parallel and distributed stream processing environments. It uses data
collected during benchmarking as labeled datasets for training and inference. In
this evaluation, we focus on assessing the effectiveness of different learned cost
models in predicting performance of streaming queries such as end to end latency.

B Lincar NN 2-way-join FFFHF 3-way-join @S2 2-Filters HEEM 3-Filters #5582 4-Filters

1 N gny T
Learned Cost Models

Fig. 5: Comparison of accuracy of various ML models: Linear regression (LR) [23],
Multi-layer perceptron (MLP) [30], Random forest (RF) [I6], Graph neural networks
(GNN) [622126] for various parallel query structures.
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Fig.6: Comparison of accuracy enumeration strategies. The rule-based strategy
achieves better accuracy with (a) 2.5k queries compared to the random strategy. It
converges in (b) 4.5 hours, three times faster than the random approach.

We integrate four distinct ML models architectures into the ML Manager:
(1) Linear regression (LR) [23]: traditionally used for its simplicity and effec-
tiveness in prediction tasks, (2) Multi-layer Perceptrons (MLP) [30]: known for
capturing nonlinear relationships in data, (3) Random forest (RF) [16]: utilizes
decision trees to improve prediction accuracy, and (4) Graph neural networks
(GNN) [622126]: applies graph structures to model complex relationships in
data. It encodes PQP as a DAG [2] within GNN, allowing the model to treat
different operators within PQP as nodes, and the relationships between them
as edges. These models are selected based on their diverse approaches to model
and handle the complexities of stream processing queries. The accuracy of these
models is measured using Q-error ¢(c,c’) where ¢ > 1 metric as mentioned be-
fore. Here, g-error being close to 1 represents better prediction accuracy. We also
implement early stopping for each ML model to prevent overfitting and ensure
efficient training times. Early stopping is based on monitoring the validation loss,
halting training if it did not improve for 100 consecutive epochs. This method
was uniformly applied across all models to maintain consistency. The training of
these model performed on m510 clusters.

O8- Graph representation assists in learning dynamic behavior of SPS. The
primary aim of benchmarking ML models is to evaluate how these diverse cost
models perform across various streaming queries. In Figure [5] indicates that the
GNN model consistently surpasses other models in predicting cost i.e., latency,
even as query complexity increases. The high accuracy of GNN can be attributed
to the fact that the graph-based representation enables it to capture and uti-
lize the intricate dependencies within the query structures effectively and dy-
namic behaviors of stream processing systems, leading to more accurate and
reliable performance predictions compared to other models. Similar observation
was made for PQP related to real-world applications and thus we only present
results on synthetic PQPs.

(2) Influence of ML training strategies. We investigate the influence of
various enumeration strategies (cf. Section , designed to optimize data col-
lection efforts and reduce training time in PDSP-BENCH. For instance, Figurel[6]
represent our findings by comparing the efficacy of random and rule-based par-
allelism enumeration strategies for training GNN models for latency prediction.
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We stick to GNN models for this evaluation because of the observations made
in the previous evaluation (O8).

0O9- Data-efficient training for high accuracy with reduced training time. Fig-
ure [6a] illustrates that the GNN model trained using rule-based enumeration
strategy requires only 2.5k queries for accurate latency predictions for both seen
(linear, 2-way and 3-way join) and unseen (other remaining synthetic) queries.
This efficiency is attributed to the strategy’s systematic collection of data, which
focuses on determining and exploring around selected parallelism degrees and
generating more meaningful graph representations for GNN than the random
strategy. Further analysis in Figure [6D] reveals that the rule-based strategy re-
quires significantly less training time—approximately three time less than the
time of the random strategy, i.e., 4.6 hours. This benchmarking of enumeration
strategies underscores a crucial insight: adopting data-efficient training methods
using PDSP-BENCH can significantly enhance model training efficacy.

5 Related Work

We divide existing benchmarking systems for DSP systems into - (i) DSPS- (i)
TPC and (74) machine learning (ML) in benchmarking systems.

Benchmarking Systems for DSPS. Despite numerous benchmarks for
database management systems, standardised and systematic benchmarks specif-
ically designed for stream processing architectures are scarce. Our review of
existing systems [32/51142/332837I89] reveals significant gaps, particularly in
addressing the nuances of DSP (cf. Table [[). The LRB [4] and similar efforts
like the YSB [18/19I25] and BigDataBench [60] often remain focused on batch
processing rather than real-time streaming. Emerging micro-benchmarks such
as HiBench [31], StreamBench [6I], RIoTBench [52] and OSPBench [58] bring
advancements in streaming benchmarks but still fall short in adequately testing
scalability and handling real-time streaming requirements. These benchmarks
typically do not address essential aspects of DSP systems like parallelism, hard-
ware diversity, and variable workloads comprehensively. Recent benchmarking
systems such as DSPBench [I3] and SPBench [24] address some aspects of par-
allelism but do not provide a holistic view of parallel stream processing. They
often neglect critical elements such as the degree of parallelism, data partition-
ing strategies, and typically rely on homogeneous hardware setups, which do not
reflect real-world DSP environments [65].

TPC Benchmarks. TPC [48] has developed several benchmarks to evaluate
various aspects of computing systems [I7TTI46/T2I55/15/49]. Among these TPC
benchmarks, TPCx-IoT [49] is the most relevant to DSP as it addresses scenar-
ios involving continuous data ingestion and real-time analytics.While the TPC
benchmarks have contributed to standardizing the evaluation of transactional
and analytical processing systems, there remains a distinct gap in benchmarking
system designed specifically for parallel and distributed stream processing due
to fundamental differences in system architecture and operational goals.

TPC benchmarks provide extensive coverage of database and batch pro-
cessing scenarios, which are more oriented towards singular query execution on
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static or slowly evolving data sets. These benchmarks fall short in addressing the
unique requirements of stream processing systems such real-time data process-
ing, continuous ingestion, and immediate response to dynamic changes in data
streams. In addition, none of the existing TPC benchmarks are designed to assess
performance under these conditions, focusing instead on batch or transactional
processing where data latency and continuous data flow are less critical. They
do not adequately test data streaming partitioning and required parallelism for
dynamically scaling systems in distributed environments.

Machine Learning in DSP systems. In the context of benchmarking of
learned component of SPS such as performance prediction, existing benchmarks
like DeepBench [5], MLPerf [50], Fathom [I], CleanML [40] and TPCx-AI [14]
have laid significant groundwork. These benchmarks are predominantly tailored
to assess specific aspects of ML systems, from the underlying hardware’s compu-
tational abilities to the effectiveness of algorithms on static dataset. For instance,
MLPerf focuses on the computationally intensive aspects of ML such as model
training and inference, TPCx-AlI provides a more comprehensive evaluation by
including the entire data processing pipeline. These benchmarks are valuable for
organizations to optimize their end-to-end ML workflows, e.g., Dell Technolo-
gies show significant performance improvements using TPCx-AI [59] in provid-
ing high-performance ML solutions. Their use of the benchmark has highlighted
improvements in hardware efficiency and cost-performance ratios, underscoring
the benchmark’s utility in real-world applications. While existing ML bench-
marks [3J8] are valuable in evaluating the capabilities and performance of vari-
ous systems, a significant gap exists in terms of incorporating these findings into
predictive performance models. For instance, DeepBench and MLPerf primarily
focus on predefined tasks for benchmarking the raw performance of hardware
and machine learning frameworks but do not extend to predicting future system
performance based on evolving workloads or system changes. Similarly, other
ML benchmarks typically evaluate performance under static conditions. They
do not provide insights into system performance under fluctuating workloads or
infrastructure changes, nor do they incorporate real-time data streams crucial for
continuous decision-making and predictive analytics in dynamic environments.

6 Conclusion

This paper introduces PDSP-BENCH that addresses the critical need for an ad-
vanced benchmarking system that reflects the complexities of modern parallel
SP environments. Its ability to support heterogeneous hardware, integrate ML
models, and evaluate a wide range of parallel query structures makes it a valu-
able tool for researchers and practitioners in the field of stream processing. Our
findings underline the constructive impact of parallelism and hardware diversity
in improving performance, but also the necessity of a refined understanding of
massive parallel dataflows. In future, we plan to expand on heterogeneous hard-
ware architectures like GPUs, followed by a in-depth analysis and training of
ML models based on data collected using PDSP-BENCH.
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