
Manisha Luthra, Sebastian Hennig, Pratyush Agnihotri, Lin Wang, Boris Koldehofe. Highly Flexible Server Agnostic Complex Event Processing Operators. To appear
in the Proceedings of 20th ACM/IFIP/USENIX International Middleware Conference: Posters and Demo, December 2019, ISBN 978-1-4503-7042-4/19/12.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all
rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will
adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.

Poster Abstract: Highly Flexible Server Agnostic Complex Event
Processing Operators

Manisha Luthra,
Sebastian Hennig

TU Darmstadt
Darmstadt, Germany
manisha.luthra@kom.

tu-darmstadt.de

Pratyush Agnihotri
axxessio GmbH, Darmstadt

Germany
agnihotri@axxessio.com

Lin Wang
Vrije Universiteit

Amsterdam
Amsterdam, Netherlands

lin.wang@vu.nl

Boris Koldehofe
TU Darmstadt

Darmstadt, Germany
boris.koldehofe@kom.

tu-darmstadt.de

ABSTRACT

Complex Event Processing (CEP) is a powerful paradigm that can
derive correlations from different data sources for a wide variety of
applications. CEP provides semantic units called operators e.g., filter
and join, that collectively represent a complex event. In current
CEP systems, operators are highly dependent on the programming
language and the underlying server. This restricts the capability
of provisioning user-defined operators at runtime as well as the
flexibility of developing server agnostic custom operators.

In this paper, we provide a serverless CEP architecture, which
offers developers the flexibility to design operators in any language
and integrate them at runtime. We embed operators in the function
as a service model of serverless architecture. This is very beneficial
for applications such as financial fraud detection where complex
machine learning operators must be integrated at runtime to avoid
service disruption. We show using our preliminary evaluation that
only with minimal overhead in latency, we can offer highly flexible
server agnostic CEP operators.

CCS CONCEPTS

• Computer systems organization→ Cloud computing;

KEYWORDS

Complex Event Processing; Internet of Things; Serverless
ACM Reference format:

Manisha Luthra, Sebastian Hennig, Pratyush Agnihotri, LinWang, and Boris
Koldehofe. 2019. Poster Abstract: Highly Flexible Server Agnostic Complex
Event Processing Operators. In Proceedings of 20th International Middle-

ware Conference Demos and Posters, Davis, CA, USA, December 9–13, 2019

(Middleware Demos and Posters ’19), 2 pages.
https://doi.org/10.1145/3366627.3368110

1 INTRODUCTION

Credit card fraud is an ongoing issue in the financial industry. Re-
cently, an analysis conducted by the Federal Trade Commission
shows that Americans reported loss of over $1.48 billion to credit

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Middleware Demos and Posters ’19,

December 9–13, 2019, Davis, CA, USA

© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7042-4/19/12. . . $15.00
https://doi.org/10.1145/3366627.3368110

fraud in 2018 alone [11]. With credit card fraud inflation by 38%
from 2017, financial providers are heavily investing into new tech-
nologies to prevent further damages. Visa alone reported to prevent
a total of $25 billion fraud in the year 2018, while spending $500
million in the last 5 years for the development of infrastructure and
AI driven algorithms. [2]

While the detection of fraud using AI is an ongoing issue in
research, the validation and training of these algorithms using data
from production systems is a field with open problems. Especially
in Complex Event Processing (CEP) systems [3], the deployment of
new operators becomes a cumbersome task because of the follow-
ing reasons. (i) The integration of an operator into an existing CEP
system is not standardized and requires in-depth knowledge of the
streaming system. (ii) The deployment of new operators requires
a restart of the streaming system cluster which could lead to ser-
vice disruptions. However, it is extremely important to perform an
online update of a CEP system for applications like fraud detection.

To overcome these limitations towards complex event processing
systems, we developed a unified API for CEP systems using the
serverless paradigm. Serverless computing or the function as a
service (FaaS) model offered by the cloud, provides an abstraction
for users to define their custom logic without direct knowledge
of the underlying compute resource. Hence, we propose CEPFaaS
that allows the user to develop custom operators towards any CEP
system and be able to deploy them at runtime without service
disruptions. In the next sections, we will give an overview of our
design, preliminary evaluation, existing work and outlook for future
work.

2 THE CEPFAAS UNIFIED API

We aim for twomain design goals for our unified API, namely, being
independent of (i) execution environment and (ii) programming
language. We establish two different entities in our design, which
provide information on how a CEP system can utilize serverless
operators. The first entity is the CEPFaaS unified API, which pro-
vides a flexible abstraction for user-defined function development
over any CEP execution environment. In our design, we show with
the example of two established CEP systems: Apache Flink [1] and
TCEP [9], that our unified interface is highly extendable, e.g., CEP-x,
can be included by only minor updates in the system.

The CEP-FaaS unified API acts as the single-point-of-contact for
users to deploy a custom operator ωudf . This is an important fea-
ture of a serverless system to contain a serverless API that acts as
an interface between user and underlying execution environment.
This provides the aforementioned advantages of deployment and

https://doi.org/10.1145/3366627.3368110
https://doi.org/10.1145/3366627.3368110

Manisha Luthra, Sebastian Hennig, Pratyush Agnihotri, Lin Wang, Boris Koldehofe. Highly Flexible Server Agnostic Complex Event Processing Operators. To appear
in the Proceedings of 20th ACM/IFIP/USENIX International Middleware Conference: Posters and Demo, December 2019, ISBN 978-1-4503-7042-4/19/12.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all
rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will
adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.

Middleware Demos and Posters ’19,
December 9–13, 2019, Davis, CA, USA Manisha Luthra, Sebastian Hennig, Pratyush Agnihotri, Lin Wang, and Boris Koldehofe

TCEP - FaaS
TCEP

100 400200 500
Events per sec

+6.1

+7.8

+0.7+0.5

10.0

12.5

7.5

5.0

2.5

L
at

en
cy

 in
 m

s

Figure 1: Latency overhead of CEPFaaS

configuration simplicity for the user while still preserving correct
execution of the application on the underlying resource. Besides
providing simple communication between user and the CEP sys-
tem, the platform also acts as a central point of knowledge in our
deployment implementation. This is because it keeps information
of all custom operators submitted by the users and all operator
execution requests by the CEP systems.

The second entity is the Custom Interface, which is a direct im-
plementation of a communication interface in a CEP system, e.g.,
for developing a user defined operator ωudf . It is responsible for
managing the communication between the CEP system and a cus-
tom operator in execution. As not all CEP systems are written in
the same programming language and the system design for rout-
ing the event stream through an operator is also not standardized,
we developed an interface that allows communication between an
operator and any CEP system. Because of the largely different im-
plementations of CEP systems, our interface can be customized for
every engine that wants to use serverless operators. This interface
is responsible for providing a standardized communication protocol
for sending and receiving events to and from custom operators. We
decided to use an in-memory database, Redis, for providing the
exchange of events with a low latency overhead and maximum
throughput.

In our preliminary evaluation (cf. Figure 1), we show that our
approach induces a minimal overhead (< 1.5ms) for smaller event
rates in comparison to a conventional CEP system TCEP [9].

3 EXISTINGWORK

Wemainly review the existing works in two directions (i) serverless
computing and (ii) complex event processing systems providing
FaaS model.

Serverless Computing. Serverless computing architectures like
AWS Lambda [12] and Google Cloud Functions [6] allow users to
issue function execution without worrying about the execution
environment and the scale of the application. Nastic et al. [10] uti-
lized serverless real-time data analytics to develop user-defined
functions, which are abstracted away from the business logic of
the underlying streaming system. An open-source alternative to
AWS Lambda is Kubeless [7], which provides multiple different
runtime environments supporting different languages, but also the
ability to provide a custom runtime using a custom image. The
aforementioned works show the significance of serverless com-
puting in today’s applications, however, either they are limited
in providing real-time data processing or the ability to provide
language independence in the execution of these systems.

Complex Event Processing. Current CEP systems provide multiple
ways of enabling custom logic as operators in streaming applica-
tions. For instance, with Apache Heron/Storm [8] the developer can

build custom operators in the form of JVMs, which are managed
by the framework and enable a greater flexibility in expressing
complex queries. Apache Beam [5] provides a means to deal with
multiple CEP systems by providing a unified interface. Frameworks
like Apache Flink [4] gives the user an ability to define logic us-
ing user-defined functions which are easier to express and do not
require major code knowledge. However, while all frameworks
provide an ability to define custom logic in different ways, they are
restricted in the following aspects: (i) submitting functions at run-
time, which makes the system more dynamic in terms of operator
updates or initial deployment and (ii) abstractions to allow the user
to develop the function only one time in a specific language and
being able to use it in multiple different CEP systems.

4 CONCLUSION

We provide a serverless unified API for CEP systems such that
user-defined functions can be implemented independent of the un-
derlying execution environment as well the programming language.
We showed in a preliminary evaluation that in comparison to a
conventional CEP system our serverless architecture induces only
a minimal overhead while providing the flexibility of being server
and language independent.

ACKNOWLEDGEMENT

This work has been co-funded by the German Research Foundation
(DFG) as part of the project C2 within the Collaborative Research
Center (CRC) 1053 – MAKI.

REFERENCES

[1] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink: Stream and Batch Processing in a
Single Engine. IEEE Data Engineering Bulletin 38 (2015).

[2] Sara Castellanos. 2019. The Wall Street Journal: Visa to Test
Advanced AI to Prevent Fraud. https://www.wsj.com/articles/
visa-to-test-advanced-ai-to-prevent-fraud-11565205158. (2019). [Accessed on
5.9.2019].

[3] Gianpaolo Cugola and Alessandro Margara. 2012. Processing Flows of Informa-
tion: From Data Stream to Complex Event Processing. Comput. Surveys 44, 3
(2012), 1–62.

[4] Apache Software Foundation. 2019. Apache Flink. https://flink.apache.org/.
(2019). [Accessed on 5.9.2019].

[5] The Apache Software Foundation. 2019. Beam. https://beam.apache.org/. (2019).
[Accessed on 5.9.2019].

[6] Google. 2019. Google Cloud Functions. https://cloud.google.com/functions/.
(2019). [Accessed on 5.9.2019].

[7] Kubeless. 2019. Kubeless. https://kubeless.io/. (2019). [Accessed on 5.9.2019].
[8] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher

Kellogg, Sailesh Mittal, Jignesh M Patel, Karthik Ramasamy, and Siddarth Taneja.
2015. Twitter heron: Stream processing at scale. In Proceedings of the 2015 ACM

SIGMOD International Conference on Management of Data. ACM, 239–250.
[9] Manisha Luthra, Boris Koldehofe, Pascal Weisenburger, Guido Salvaneschi, and

Raheel Arif. 2018. TCEP: Adapting to Dynamic User Environments by Enabling
Transitions Between Operator Placement Mechanisms. In Proceedings of the 12th

ACM International Conference on Distributed and Event-based Systems (DEBS ’18).
ACM, 136–147. https://doi.org/10.1145/3210284.3210292

[10] Stefan Nastic, Thomas Rausch, Ognjen Scekic, Schahram Dustdar, Marjan Gusev,
Bojana Koteska, Magdalena Kostoska, Boro Jakimovski, Sasko Ristov, and Radu
Prodan. 2017. A serverless real-time data analytics platform for edge computing.
IEEE Internet Computing 21, 4 (2017), 64–71.

[11] FTC Paul Witt. 2019. Federal Trade Commission: Top frauds of
2018. https://www.ftc.gov/news-events/blogs/business-blog/2019/02/
top-frauds-2018?mod=article_inline. (2019). [Accessed on 5.9.2019].

[12] Amazon Web Services. 2019. AWS Lambda. https://aws.amazon.com/lambda/.
(2019). [Accessed on 5.9.2019].

https://www.wsj.com/articles/visa-to-test-advanced-ai-to-prevent-fraud-11565205158
https://www.wsj.com/articles/visa-to-test-advanced-ai-to-prevent-fraud-11565205158
https://flink.apache.org/
https://beam.apache.org/
https://cloud.google.com/functions/
https://kubeless.io/
https://doi.org/10.1145/3210284.3210292
https://www.ftc.gov/news-events/blogs/business-blog/2019/02/top-frauds-2018?mod=article_inline
https://www.ftc.gov/news-events/blogs/business-blog/2019/02/top-frauds-2018?mod=article_inline
https://aws.amazon.com/lambda/

	Abstract
	1 Introduction
	2 The CEPFaaS Unified API
	3 Existing Work
	4 Conclusion
	References

